8,431 research outputs found

    News – European Union

    Get PDF

    Electronic Hong-Ou-Mandel interferometry in two-dimensional topological insulators

    Full text link
    The edge states of a two-dimensional topological insulator are characterized by their helicity, a very remarkable property which is related to the time-reversal symmetry and the topology of the underlying system. We theoretically investigate a Hong-Ou-Mandel like setup as a tool to probe it. Collisions of two electrons with the same spin show a Pauli dip, analogous to the one obtained in the integer quantum Hall case. Moreover, the collisions between electrons of opposite spin also lead to a dip, known as Z2\mathbb{Z}_{2} dip, which is a direct consequence of the constraints imposed by time-reversal symmetry. In contrast to the integer quantum Hall case, the visibility of these dips is reduced by the presence of the additional edge channels, and crucially depends on the properties of the quantum point contact. As a unique feature of this system, we show the possibility of three-electron interference, which leads to a total suppression of the noise independently of the point contact configuration. This is assured by the peculiar interplay between Fermi statistics and topology. This work intends to extend the domain of applicability of electron quantum optics.Comment: 12 pages, 7 figure

    An interesting example for spectral invariants

    Full text link
    In "Illinois J. of Math. {\bf 38} (1994) 653--678", the heat operator of a Bismut superconnection for a family of generalized Dirac operators is defined along the leaves of a foliation with Hausdorff groupoid. The Novikov-Shubin invariants of the Dirac operators were assumed greater than three times the codimension of the foliation. It was then showed that the associated heat operator converges to the Chern character of the index bundle of the operator. In "J. K-Theory {\bf 1} (2008) 305--356", we improved this result by reducing the requirement on the Novikov-Shubin invariants to one half of the codimension. In this paper, we construct examples which show that this is the best possible result.Comment: Third author added. Some typos corrected and some material added. Appeared in Journal of K Theory, Volume 13, in 2014, pages 305 to 31

    Projected entangled-pair states can describe chiral topological states

    Full text link
    We show that Projected Entangled-Pair States (PEPS) in two spatial dimensions can describe chiral topological states by explicitly constructing a family of such states with a non-trivial Chern number. They are ground states of two different kinds of free-fermion Hamiltonians: (i) local and gapless; (ii) gapped, but with hopping amplitudes that decay according to a power law. We derive general conditions on topological free fermionic PEPS which show that they cannot correspond to exact ground states of gapped, local parent Hamiltonians, and provide numerical evidence demonstrating that they can nevertheless approximate well the physical properties of topological insulators with local Hamiltonians at arbitrary temperatures.Comment: v2: minor changes, references added. v3: accepted version, Journal-Ref adde

    An Icosahedron for Two: a Many-Sided Look at Making a Duet

    Get PDF
    The space around our bodies is not empty or neutral. In fact, the space around our bodies is loaded with meaning and important. When we move through it, whether it be in our daily lives or a choreographer making specific choices in order to convey a message, we activate new understandings in our lives. As a dancer and choreographer, I created a duet from improvisational climbs on an icosahedron. This article discusses choreographing from the form icosahedron and connects Laban\u27s theories of space harmony with the activation of meaning in my life

    Polynomial regression under shape constraints

    No full text
    Calculating regression under shape constraints is a problem addressed by statisticians since long. This paper shows how to calculate a polynomial regression of any degree and of any number of variables under shape constraints, which include bounds, monotony, concavity constraints. Theoretical explanations are first introduced for monotony constraints and then applied to ad hoc examples to show the behavior of the proposed algorithm. Two real industrial cases are then detailed and worked out

    On analysing sea level rise in the German Bight since 1844

    Get PDF
    In this paper, a methodology to analyse observed sea level rise (SLR) in the German Bight, the shallow south-eastern part of the North Sea, is presented. The paper focuses on the description of the methods used to generate and analyse mean sea level (MSL) time series. Parametric fitting approaches as well as non-parametric data adaptive filters, such as Singular System Analysis (SSA) are applied. For padding non-stationary sea level time series, an advanced approach named Monte-Carlo autoregressive padding (MCAP) is introduced. This approach allows the specification of uncertainties of the behaviour of smoothed time series near the boundaries. As an example, the paper includes the results from analysing the sea level records of the Cuxhaven tide gauge and the Heligoland tide gauge, both located in the south-eastern North Sea. For comparison, the results from analysing a worldwide sea level reconstruction are also presented. The results for the North Sea point to a weak negative acceleration of SLR since 1844 with a strong positive acceleration at the end of the 19th century, to a period of almost no SLR around the 1970s with subsequent positive acceleration and to high recent rates

    News – European Union

    Get PDF
    • …
    corecore